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DYNAMIC BEHAVIOR FROM ASYM~tPTOTIC EXPANSIONS

by

Jack K. Hale and Luiz Carlos Pavlu

ABSTRACT

The purpose of this paper is to discuss stability properties of

solutions of periodic and almost periodic differential equations containing

a small parameter. The existence of the solution can be obtained in the

first approximation but the stability only after k-approximations.

We obtain the results using asymptotic expansions, higher order

averaging and the concept of exponential hyperbolicity of order k.
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1. Introduction

In the study of a certain class of models, for the spin/orbit resonance

of the planet Mercury, in particular, and for nonlinear resonance in general,

Murdoch [6) encountered an interesting problem in the stability of periodic

solutions of periodic differential equations containing a small parameter. The

existence of the periodic solution could be obtained from the first approximation,

but the stability could not.

Murdoch and Robinson [7] resolved the difficulty through the introduc-

tion of the concept of "strong k - hyperbolicity" for the period map. It is

the purpose of this paper to show that the same results are valid under the weaker

hypothesis that the origiaal vector field has an "exponential dichotomy of order

k". Since the latter concept does not assume the vectorfield is periodic, it

is possible to have applications to more general situations as in almost periodic

cases,for example.

In section 2, we introduce the concept of exponential dichotomy of

order k and present a result relative to its "roughness". In section 3,

we present the main result in the periodic case showing that the stability

properties of the periodic orbit can be solved through the latter concept; also,

we give sufficient conditions to ensure "exponential dichotomy of order k"

and some remarks and examples. Finally, in section 4, we solve the almost

periodic case.

2. Exponential Dichotomy of order k.

Let X(t,E) be a fundamental matrix for the linear system:

(2.1) x = CA(t,c)x
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where the n x n coefficient matrix A(t,E) is continuous on t E R and a

sufficiently smooth function of the real parameter C E(O,L 0).

Definition 2.1. The equation (2.1) has an exponential dichotomy of order k

if there exists a projection P continuous for E (0, _0), a positive constant

k
K and a function a(E) = cek , c > 0, such that

JX(tE)P E X-(s,e)I < K e-0(E ) (t - s) t > s > 0
(2.2)

IX(t,c)(l-Pe)X' (s,E)( < K e - (E)(st) s > t > 0

An important property of exponential dichotomies is tneir roughness; that is,

they are not destroyed by small perturbations. More precisely, we can state the

following result:

Theorem 2.1: Suppose that the linear system (2.1) has an exponential dichotomy

of order k. Let BE = B(t,E) be a continuous matrix function, bounded uniform-

ly on t E R+ for each fixed E E(0, eO). If IBe1 = sup JB(t,s)f = O(ICN)
tER

for N > k, then the perturbed system

(2.3) y = E(A(t,E) + B(t,c))y

also possesses an exponential dichotomy of the same order.

The proof can be accomplished by applying the Contraction Mapping Principle

to the operator

TY(t) = X(tE)P E X(t,E)P X-1 (s,E) E B(s,e)Y(s)ds -

X(t,E)(-P1)X'I(s,c) f-B(s,c)Yslds.
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Elementary estimates yield:

ITY(t)I < K + 2c(e)'iKeIBFI IYn ,

ITY 1 (t) - TY2 (t)l < 2a(c)-IKeIBe l E Y) I Y21

where IfYJJ = sup IY(t)l and OL(E) = cc k  If () - 1  1 the
t>O

mapping T has a unique fixed point. Since IBCI _(IIN) , there exists an

EI > 0 such that the latter estimate is valid for CE (0, Ei). The remainder

of the proof is easily supplied by following the techniques in Coppel [1].

Corresponding results for the half-line R may be obtained by the

change of variable t - -t and the same question for the whole line R can be

answered in terms of the results for the two half-lines or directly using the

operator:

TY(t) = f X(t,F-Pe (s,c) EB(s,c)Y(s)d,;-I X(t,c) (I-P )X- (s,E) ,:B(s, L)y (s)ds

Corollary 2.3 Consider the perturbed system

0 N+I
(2.4) y = eA(t,s)y + c f(t,y,e)

where f: R x Q c Rn X [O,] 0 Rn is uniformly continuous and bounded in

t E R for each (y,c) fixed in x [0,c 0 ] and f(t,0,c) = 0.

If the unperturbed system (2.1) has an exponential attraction of order

k < N then, for small E,the solution y = 0 of (2.4) is uniformly asymptotically

stable.

More generally, results of this kind can be extended to a system of the

form
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(2.5) x =EA(t, Qx + eN+1f(t,x,c) + g(x,e)

where g(0, 0 0, (0, C 
= 0.

The reader is referred to Hale [41 and Coppel [] for details.

Remark: In [7], Murdoch and Robinson consider a system =f(t,xC),

where E > 0 is a small parameter, f is continuous, w-periodic in t and

smooth in x and E , and the Poincare map UC: Rn _, Rn given by Uie(x) = O(Wx,E)

where O(t,x,c) is the general solution of the system above satisfying

O(O,x,E) = x.

Suppose that the Taylor Series of U is available; that is,

UC(x) = VE(x) + E k+lE(x) where V,(x) = x + EUl(x) +...+ FkUk(x). If there is

a x0  such that U1 (x0) = 0 and Ul(x 0) is nonsingular,the Implicit Function

Theorem give us fixed points x*(C) of V (x) and x(C) of UE(x) with

x (E), x(C) - x0 as S -0.

The question is: if x*(S) is a hyperbolic fixed point for V C will

x(S) be a hyperbolic fixed point of UE?

This, in general, is not true, except when the first approximation

U1  is hyperbolic which is well known.

They resolved the problem introducing the concept of "strong k-

hyperbolicity" and giving sufficient conditions to obtain "strong k-hyperbolicity".

The concept of exponential dichotomy of order k is more general

and can be applied to "the almost periodic problem" as we will show in the

last section.



3. The periodic case.

Suppose x E Rn 6 > 0 a small parameter, f: Rx R x [0, ) + R

analytic in E E (0, L0. w-periodic in t for each fixed (xo) and sufficiently

smooth in x E Rn. Consider the system:

(3.1) x f(t,x,L)

Suppose the asymptotic expansion, in powers of E, of the system (3.1), up to

order N is known,

(3.2) E= f (t,x) + i f2 (t,x) +...+E fN(fx) + I f(t,x,)

where each f., i = 1,2,...N is an w-periodic function in t and f is
1

w-periodic for each (x,E) fixed.

Using averaging up to order N, we may choose a suitable change of

coordinates x -* y, w-periodic in t, which eliminates t from the first N

terms in the right-hand side of (3.2). The resulting system has the form

(3.3)y = Ef(y) + . + (y) Nlf(t,Y,E)

where f has the same properties as f before. If there is a y0  such that

and ay0) is nonsingular and, furthermore, if X. is an eigenvalue

of 1y0  and Re \i[ ] # 0 , i = 1,2,...n, then we can conclude

existence, uniqueness and stability properties of the periodic solution

x*(t,e) of (3.1) from known results, see Hale [4].

Actually, in this case, we have an exponential dichotomy of order

one. In what follows, we discuss a more general situation. That is, suppose

at least for some i, I < i < n, we have Re y ] 0 and consider

I r |1 I IIII I ll [ II I iii 01 and considc
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the equations.

(3.4) x = E:F(x,E)

where F(x,L) =f(x) Lf'(x)+ ... ENf (x) and

N N+I'

(3.5) x LF(x,L) + L (t,x,-).

Theorem 3.1. Suppose f., i = 1,2,...N, f satisfies the conditions enumerated

in this section. If there is an x0  such that F(x ,O) 0 and -.(x ,0) is

nonsingular, then there exist an L > 0 and functions xN (c) and x*(t.L),

both analytic in c, x*(t,e) continuous in t for each fixed t. E[O,L1 1,

x*(t+wt) = x*(t,c), xN() is an equilibrium point of (3.4), x*(t,L) satisfies

(3.5), xN(O) = x*(t,O) = x0  and 01x*(t,1) - XN()l = 0(c N).

Furthermore, if the linear variational equation of (3.4) at the

equilibrium point xN(c) has an exponential dichotomy of order k , k_" N,

then the linear variational equation of (3.5) at x*(t,E) also has an exponential

dichotomy of the same order.

To prove the theorem we need the following result:

Lemma 3.2: Consider the system

(3.6) = &A(c)x + f(t)

where x E Rn, A(E) is a continuous matrix function of the parameter L -> 0

and f E -w , the Banach space of the continuous w-periodic functions.

If det A(O) # 0, then there exist K > 0, L 0 > 0 such that (3.61 has

a unique solution

.-()f E w and I5€t(C)fI < K/,If G < E Lo
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Proof: Since det A(O) A 0, there exists an L > 0 such that the unperturbed0

system x = LA(E)x is noncritical with respect to

this implies the existence of a continuous linear operator _*(L)

0< L < c defined by
-0

( ) -LA()w- I-le-E-A(L)sl/Lf(t+Slds
)0

-LA(c)w-1 -1
Furthermore, lim E.e -I] = -1Ail . Thus, .*(L) has a uniform

E- 0

bound on (0,L.0 given by l5E-)f_ < K./,J f. More details can be found in

Hale [41.

Proof of Theorem 3.1: Consider the system

• N+ I
(3.5) x = EF(x,c) + L f(t,x,c)

aF
If there is an x0  such that F(x0,0) = 0 and det -5x (x 0O) $ 0,

by the Implicit Function Theorem, for & small, there is a unique xN (C) such

that xN(O) = x0  and F(xN(C),C) = 0. xN(L) is the equilibrium point of the

autonomous system

(3.4) x EF(x,E)

Using the transformation x - y defined by x = x N(E) + y (3.5) becomes

(3.7) y = F(xN(E) + yE) + N~ lctN(c yc) =E-x

+ EG(y,E) + EN+lf(t,XN(E)+y,E)

aG
where G(O,.) = 0 - (0,e) = 0.

Equation (3.7) can be written in the form

(3.8) = LA(E)y + E[G(y,e) + Nf(txN(L) + y C)
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where A() = (X(),) -. - (x0 ,0) + EF(c) A(0) + LF().

A solution y of equation (3.8) in Y must satisfy

(3.9) H(y, E) y y - L -*(E)q:-,L) = 0

where 90: x(0,E 0 ] + . The lemma 3.2 and the properties of 9 and

. '(t) give us a unique w-periodic solution v* of (3.8), for L sufficiently

small, defined by

y*= C .- C(c)NG(y*,E) + CNf(.,xN(L) + y*,01.

Since IL 3t'(E)l < K, using successive approximations with yo= 0, we obtain

IY* <  C N; this shows that there exists an w-periodic solution x*(t,L) of

(3.5), x*(.,O) = x N(0) + y*(.,0) = x0  such that Ilx*(.,L) - xN()I = 0(,N ).

The linear variational equation of the system (3.5) at the w-periodic

solution x*(t,c) is given by

=E OF (X*(t,€) E)z + N+1 a" (t,X*(tN:),l)Z
ax x'

1- (XN(_),F) + 0C(N))z + E 'f (t,x*(t,s),L) z

(310 - ( -F- (xN(s)eF
E F- (XN(E),F-)Z + 0(E N +

I )

This means that the linear variational equations of (3.4) at xN(k) and (3.5)

at x*(t,c) coincide up to order N and a simple application of theorem 2.1.

completes the proof.

Sufficient conditions for exponential dichotomy of order k < N,

equivalent to those given by Murdoch and Robinson for strong k-hyperbolicity,

can be given as follows.

,I
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Lemma 3.3. Consider the system

(3.11 A (F)

n 2' N
where x E R , A(E) is a n x n matrix such that EA(L) LA I + F-A2+...+E AN

o(N+I).

If the eigenvalues of A 1 are distinct and if the eigenvalues L XiM

of LAI+...+ N , suitably numbered, satisfy:

k
Re E X.(e) < -c e i =1,2 .... r.

Re s X.(E) > c ek i r1.n1+ i

for some k < N and some positive constant c, then the equation

(3.12) = (5A1 +...+N)X

has an exponential dichotomy of order k < N.

In fact: Consider A() = A1 + 0(s). If A has distinct eigenvalues,

N-1
A(E) = AI+...+E AN has distinct eigenvalues Xi(E) for s small. The

matrix ! of eigenvalues is nonsingular (even for s = 0) and-" A(s) '

Diag {.()) i 1,2,...n. If x =-f' y, the equation (3.10) becomes
E

(3.13) y = Diag (EA.(s))y

with fundamental matrix Y(t) = Diag (exp (Esi(e))t.

Using the hypotheses, reordering if necessary and taking the projection

P = (Ir ×r'0) we obtain

SY(t)MPY (s) = IDiag(exp. (sX.( ))(t-s) < e t > s, i 1,2 .... r.
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and
k.) o y- 1 (s)I <CCEk(s -t )s>t1Yt)I ] -s > t i = r~l,. . .,n.

Since (3.13) is similar to (3.12) the fundamental matrix X(t) of

(3.12) satisfies

IX(t)PX-' (s)l < M e-cEk (t-s) t > s

E E~IX(t)(1-PL)x -1(s)l < M e-c E k (,.;t ) s > t

with same projection and same order.

Remarks:

1) Actually, to obtain an exponential dichotomy, we do not need to have

distinct eigenvalues as the following example shows:

(3.14) ( _ 2 x

2where x ER , < <1, n > 2.

The fundamental matrix X(t) of (3.14) satisfies:

-1 -l/2E2(t-s)
!X(t)x-(s)I < e- , t > s where P. = I2x2 and we have an "exponen-

tial attraction of order 2." Observe, if n=2, that A, = 0, A 2 = )and

the matrix I I/ ) of eigenvectors becomes unbounded when E -+ 0.
(0 0)

2) The example given by Murdoch and Robinson, to show that the hyperbolicity,

2 3present at order C , may be destroyed by a perturbation of order E , can be

obtained, up to order C2 considering the solution operator e A (E)t  at

t=l of the system (3.14), when n=l.

e= C 1 ) ( 0 ) + 2 (0 )

1 0 0 0 1
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9

In fact, in this case the hyperbolicity present at order C, 1,2 2 -

is destroyed by (0 0) C3 for example .However, the fundamnental matrix
(2 02

-E2 b -E t
X given b" (t) 0 -E , does not have an

exponential dichotomy of order 2.

The same problem may occur if we have in the first approximation,

a double eigenvalue in the imaginary axis.

4. The almost periodic case.

Consider the system

(4.1) x =f(t,x,c)

where f is uniformly almost periodic in t E R, analytic in t > 0 and

sufficiently smooth in x, x E R
n

Consider the expansion

N Nf+
(4.2) x =f 1 (t,x) +...+ E (t,x) + E f(t,x,L)

where the f., i = 1,2 .... N, and f are almost periodic in t with the same

properties as f.

Under some nonresonance hypothesis on the frequencies of the f., weI

can average up through order N to obtain the following system:

+ l 2- . N. N +fx N+1'-

(4.3) L f(xx) 2 x +...+ (X) f(t,x,L)

This system can he seen as a perturbation (almost periodic) of the

autonomous equation

(,1.,) = F(x,e)
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where F(x,c) = ) (x)+... .N (x). The method used in the proof of theorem

3.1 does not work in this case but, with a slight modification we can establish

the following.

Theorem 4.1. Suppose f, i = 1,2,...N, f satisfy the conditions enumerated

in the beginning of this section.

If there is an x0  such that f(x )=0 and (x ) is nonsingular,
0 0')x 0

then there exist an C0 > 0 and a function xN(E) analytic in L, ( <  -0 ,

XN(O) = xO, XN(E) is an equilibrium point of (4.4).

Furthermore, if the linear variational equation of (4.4) at XN()

has an exponential dichotomy of order k < N/2 then, in a small neighborhood

of xN( ), the equation (4.3) has a unique almost periodic solution x*(t,L-),

analytic in E, x*(.,O) = x0  and the linear variational equation of (4.3) at

x*(t,£) also has an exponential dichotomy of order k for L small enoujh

(possibly with a positive constant c smaller than c).

To prove the theorem, we need the following:

Lemma 4.2. Consider the system

(4.5) x = E A(c)x + f(t)

where x E R, A(L) is a continuous matrix function of L > 0 and f E 9,

the Banach space of almost periodic functions. If the autonomous system

X = LA(L)x has an exponential dichotomy of order k, then there exist K " 0,

L > 0 such that (4.5) has a unique almost periodic solution '(t.)f £.

for 0 L < L0 and I S(')ff < K/ekjff

......0I _* (E lI < , K/ , I . . . .... II I I ff.. ... I



-13-

In fact, there exist a projection P. and positive constants M and c

such that the fundamental matrix X(t) of the autonomous system x = LA(L)x

satisfies

-1 -c Ek(t-s)
IXE(t)PExE (s)I < M e t >_ s

Ix C(t)(I-PdX (s)I < N1 e-c E (s -t )  s > t.

Since - '()f is given by

f X (t)PEX (s)f(s)ds - C XC(t)(I-lP)'XE (s)f(s)ds
t

_00

elementary estimates yield I - ' (E)f I < K/2Cfl

Proof of Theorem 4.1. The first part of the proof is similar to the pcriodic

case and, making the transformation of variables x = x N(L-) + y we can

consider directly the equation

(4.6) = A(C)y + C[G(y,C) + Nf(txN(L) + y, )]

3F
where A (C) = .(N(C) ,E), G(O,E) = 0, G(0,L) = 0 and f as before. Ifwhr Ac =-x D efr.I

there is a solution v* E .Q56 of (4.6), this solution must satisfy the

equation

(4.7) y - c ()[G(y,E) + kNf(.,XN(L) + ,VL)] H(y,c) = 0

where -*(L) is the linear operator defined in Lemma 4.2.

Suppose the linear system x =cA(c)x has an exponential dichotomy
k 31 ar

of order k. Scale y = E z in formula (4.7) and, if k < N/2, H. are

continuous in a small neighborhood of the origin, H!(0,0) (0 and L- (0,0) = 1.

. . .. .. . . . f ,, ... .. . . .. , .. . . . .. ... . .. .. il ll ll ll Ii~ i l '- - . . . . III 13 iini i I a y
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Using the Implicit Function Theorem, we obtain a unique almost periodic solution

y.*(t,E) of (4.6), analytic in E E (0,E l ) for some L I LO' "v*(* 0) = 0.

This means that equation (4.3) has a continuous almost periodic solution

x*(t,e) = XN(C) + y*(t,L), analytic in E, x*(.,O) = x0 . To estimate

y*(. = x*(. E) - XN(E)I consider y* = y*(.,t:) given by the formula

(4.8) v* = 5 _*'(E)[G(y*,E) + ENf(.xN(E) + y*,ci)]

where < K/ E We can proceed by iterations, taking y0= n

if k < N/2 the estimates yield jy*1 < k E:N/2+ and the linear variational

equation of (4.3) at x*(t,c) and of (4.4) at xN(E) coincide up to order

N/2. The theorem 2.1 is applied to complete the proof.

As a special case consider the linear system:

(4.9) x = L5 (t)x = EAI(t)x +...+ kA k(t)x + Ck+1 c(t,E)x

where Ai(t), i = 1,2,...k, are matrices whose elements are trigonometrical
1|

polynomials and C(t,e) is an almost periodic matrix, continuous in C E 10, L o,

uniformly in t E R.

Consider the averaged system:

(4.10) y cB(e)y + E k+D(t,e)y

where B(L) B 1 + F 2  E... ck-1Bk , 0 < E < col and D(t,d) has the same

properties as C(t,c).

.... J
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Suppose that B has a simple eigenvalue zero, all others

lying in the left half-plane. Then B(L) has, for L small, a simple real

analytic eigenvalue X(s) = aIE + a2 E +... and the stability properties of

(4.9) depend only on the sign of the first nonvanishing coefficient a. of

X(c) provided that j < k-i. Actually, the following result is valid.

Theorem 4.3. Let j5 < k-1; If a. j 0 , the equation (4.9) has an exponential- 30

dichotomy of order j0+l and foreach function f € C the equation

(4.11) x = L(t)x + f(t)

has a unique solution x* = x(t,f,E) , stable if a. < 0 and unstable

if a. > 0.
30

This result is given by Krasnosels~ki in [5].
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